What will NASA's Mars rover do when it gets there?

If NASA's Mars Curiosity rover lands successfully, it will look for signs of habitability. The rover will also keep an eye on the weather.

When NASA's next Mars rover, Curiosity, arrives at the Red Planet next month, it will help pave the way for the humans that might one day follow.

In addition to looking for signs of current and past habitability to extraterrestrial life, the rover, due to land Aug. 6, will learn more about whether Mars could be habitable for humans — particularly in terms of its weather. The continuous record of Martian weather and radiation Curiosity plans to collect will help future forecasters tell humans — should we choose to go — how best to protect themselves in the harsh environment, experts say.

That's why NASA's Human Exploration and Operations Mission Directorate paid to include a radiation detector onboard the car-size Curiosity, the centerpiece of the Mars Science Laboratory mission, which is run by NASA's Jet Propulsion Laboratory.

“When we were designing Curiosity, we were going to use it for our habitability investigations as well,” said Ashwin Vasavada, MSL's deputy project scientist. “But it really is paid for and intended to understand the environment humans will experience on Mars.”

The $2.5 billion rover launched Nov. 26, 2011. It is designed to work for at least two years on Mars.

Curiosity will sample the Martian environment every hour through two main instruments: a meteorology station and a radiation detector. The instruments will run even when the rover is sleeping, during the Martian night, to provide a continual stream of data. [Mars Rover Curiosity's Landing Site: Gale Crater (Infographic)]

The Radiation Assessment Detector (RAD), in fact, began running during Curiosity's eight-month journey to Mars. Radiation from the sun and galactic cosmic rays occur throughout the solar system, meaning that humans would be exposed to elevated radiation from the moment they leave Earth's cradling magnetic field. Understanding how much radiation would bombard the spacecraft is the first step to learning how we can shield humans against it.

When Curiosity begins work on the Red Planet, RAD's telescope detectors will run for 15 minutes every hour, measuring a broad range of high-energy radiation in the atmosphere and on the surface.

It's not fully known just how radiation behaves close to the surface. Although orbiting spacecraft such as the Mars Reconnaissance Orbiter can measure it from above, it's harder for those spacecraft on high to see radiation close to the ground. Of most concern to scientists are rays that can splinter off from radiation hitting the Martian atmosphere.

“The high-energy particles can generate secondary, lower-energy particles when they interact with molecules of gas in the atmosphere,” Vasavada said.

Most particles in cosmic rays are protons, which can generate secondary gamma rays or neutrons, he added. This process also happens on Earth, but higher in the atmosphere and far away from the surface.

According to Vasavada, these energetic particles can ionize molecules inside humans, breaking the molecules apart and damaging cells. Essential complex organic molecules such as DNA could be affected.

“How much damage a particle does is not simply related to how energetic it is,” he said. “Heavier, less energetic particles produced as secondaries may be rarer than protons to an astronaut, but can do just as much total damage.”

Weather forecasting will also be needed for astronauts roaming on Mars. In a first since the Viking vanguard missions of the 1970s, MSL will feature a full meteorology package called the Rover Environmental Monitoring Station. The Spanish–built REMS will run for at least five minutes every hour, night and day.

To capture the speed and direction of the wind, and the air's temperature and humidity, REMS will use electronic sensors on two booms stretching out horizontally from a camera mast mounted on the rover.

Ultraviolet radiation will be measured using a sensor stuck on the rover's deck. Some of the wavelengths it will watch for are the same ones sensed by the Mars Reconnaissance Orbiter flying above, providing a more complete record of what's happening on Mars.

Inside the rover, an air pressure sensor will taste the air outside through a tube with a small opening to the atmosphere. Radiation-sensitive electronics controlling REMS will also stay inside Curiosity to protect them from the elements.

Through coordinating MSL's weather and radiation sensing with what is seen from above, NASA expects a better picture of what Mars looks and feels like, making it easier for humans to get there.

Follow Elizabeth Howell @howellspace, or SPACE.com @Spacedotcom. We're also on Facebook and Google+.

Copyright 2012 SPACE.com, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

You've read 3 of 3 free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to What will NASA's Mars rover do when it gets there?
Read this article in
https://www.csmonitor.com/Science/2012/0726/What-will-NASA-s-Mars-rover-do-when-it-gets-there
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe
CSM logo

Why is Christian Science in our name?

Our name is about honesty. The Monitor is owned by The Christian Science Church, and we’ve always been transparent about that.

The Church publishes the Monitor because it sees good journalism as vital to progress in the world. Since 1908, we’ve aimed “to injure no man, but to bless all mankind,” as our founder, Mary Baker Eddy, put it.

Here, you’ll find award-winning journalism not driven by commercial influences – a news organization that takes seriously its mission to uplift the world by seeking solutions and finding reasons for credible hope.

Explore values journalism About us