How origami can make solar panels more efficient

Borrowing from the cut-paper art of kirigami, researchers at the University of Michigan have redesigned solar panels to continuously track the sun as it moves across the sky. 

|
(Aaron Lamoureux, Kyusang Lee, Matthew Shlian, Stephen Forrest, Max Shtein/University of Michigan
Dynamic kirigami structures capable of solar tracking, consisting of monolithicallyintegrated, single crystalline yet flexible, gallium arsenide solar cells on polyimide sheets.

A new technique to harness solar energy by using kirigami solar cells was announced in a paper published Tuesday in the journal ‘Nature Communications.’

Kirigami is a variation of origami, the Japanese art of paper folding. Unlike standard origami, kirigami allows for the paper to be cut, as well as folded. 

The flat design of traditional solar panels limit the panel's surface area, reducing potential efficiency. Because the sun moves continuously, researchers at the University of Michigan used kirigami to create a contracting lattice structure that follows the source of solar energy as it moves throughout the day.

When tested at a solar panel farm in Arizona, the kirigami panel produced 36 percent more photovoltaic energy compared to a traditional panel.

Solar panel efficiency has been addressed before, but the motorized assemblies designed to rotate the panels with the sun make the systems more expensive and too heavy to install on rooftops. But with kirigami panels, the cut plastic strips (and the solar cells on them) twist over a radius of 120 degrees when the panel is stretched, allowing the cells to face toward the sun as the panel stays stationary. 

“We did try a lot of patterns, and it turned out that this simple pattern was actually one of the best,” explains Max Shtein, one of the authors of the published article and an associate professor of engineering and materials science at the University of Michigan. “It has this property where it kind of moves out of its way and prevents shadowing.”

There is a design tradeoff, however. Kirigami panels would have to be twice as big because “You’re stretching the solar cell, so you have to have room to stretch it into,” explains Shtein. But until the strips began twisting with the sun, the panels wouldn’t look any different from conventional ones.

Although Shtein is confident about the versatility of kirigami-designed panels, other scientists, such as Keith Emery, who evaluates solar panel designs for the National Renewable Energy Laboratory, worry there are a lot of potential problems with the new design. Emery questions the material’s durability to extreme temperatures and extensive stretching.

Along with increasing energy efficiency, reducing the cost of photovoltaic systems is a significant goal for engineers.   

“As we try and further and further decrease the cost of solar electricity and increase the amount of power we get, we will transition towards other types of geometries that have better performance and cost less,” says Shtein. “We think it has significant potential, and we’re actively pursuing realistic applications. It could ultimately reduce the cost of solar electricity.”

This is not the first scientific improvement to involve a form of Japanese origami. 

Within the last few months, scientists at Arizona State University used kirigami to explore the possibility of flexible batteries and physicists at Cornell University shrunk kirigami down to the nanoscale to potentially create the smallest machines ever seen by mankind.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to How origami can make solar panels more efficient
Read this article in
https://www.csmonitor.com/Science/2015/0911/How-origami-can-make-solar-panels-more-efficient
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe