With help of lasers, NASA hopes to create the 'coldest spot in the universe'

While astronomers crave more powerful telescopes and planetary scientists demand orbiters, landers, and rovers, quantum physicists want lower temperatures and microgravity. 

|
Courtesy of NASA
An artist's illustration depicts an atom chip for use by NASA's Cold Atom Laboratory (CAL) aboard the International Space Station. CAL is designed to use lasers to cool atoms to ultracold temperatures.

While space has long been described as “the final frontier,” different scientists want different tools for mapping it out. Astronomers crave more powerful telescopes; planetary scientists have a long “wish list” of orbiters, landers, and rovers.

But quantum physicists, who study matter and energy on a subatomic scale, want near-zero temperatures and microgravity. An experimental chamber set to be installed aboard the International Space Station this summer will deliver both.

Dubbed the “Cold Atom Laboratory,” the ice-chest-sized facility is designed to use a vacuum chamber, lasers, and an electromagnetic “knife” to slow down gas atoms until they’re almost motionless, bringing temperatures inside to a billionth of a degree above absolute zero – what NASA describes as “the coolest spot in the universe.”

Observing atoms at such low temperatures, in the near weightlessness of space, could drastically change our understanding of matter and energy.

“Studying these hyper-cold atoms could reshape our understanding of matter and the fundamental nature of gravity," said CAL project scientist Robert Thompson in a Jet Propulsion Laboratory statement.

High on the new facility’s agenda will be research into an exotic class of matter called Bose-Einstein condensates, which were first theorized by Albert Einstein and another physicist, Satyendra Nath Bose, in the early 20th century.

In this state, when brought close to absolute zero, atoms clump together and enter the same energy state, making them impossible to distinguish from one another. Like light, they more closely resemble a wave.

Scientists first achieved this state on Earth in 1995, but it lasted only for a fraction of a second. According to NASA, “on the International Space Station, ultra-cold atoms can hold their wave-like forms longer while in freefall.” Dr. Thompson “estimated that CAL will allow Bose-Einstein condensates to be observable for up to five to 10 seconds,” and possibly for hundreds of seconds with future upgrades.

And without the interfering pull of Earth’s gravity, scientists say the strange world of quantum mechanics will get super-sized. In 2014, Thomson predicted that “we’ll be able to assemble atomic wave packets as wide as a human hair – that is, big enough for the human eye to see.”

That wouldn't just make things easier for quantum physicists. A better understanding of quantum mechanics could prove indispensable to future space explorers.

Wave-like atoms could eventually be used to “map out 'the shape of the gravity that we feel' on a planet whose natural features – underground caverns, melting ice caps – create small but measurable effects on its gravitational pull,” The Christian Science Monitor reported in 2014, quoting Jason Williams, an atomic physicist at NASA's Jet Propulsion Laboratory. Other potential benefits include more accurate atomic clocks and more powerful quantum computers.

But these payoffs depend on a rigorous pre-launch testing regimen currently proceeding under the direction of JPL’s Dave Aveline.

"The tests we do over the next months on the ground are critical to ensure we can operate and tune it remotely while it's in space, and ultimately learn from this rich atomic physics system for years to come," he explained in the JPL statement.

You've read 3 of 3 free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to With help of lasers, NASA hopes to create the 'coldest spot in the universe'
Read this article in
https://www.csmonitor.com/Science/Spacebound/2017/0308/With-help-of-lasers-NASA-hopes-to-create-the-coldest-spot-in-the-universe
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe
CSM logo

Why is Christian Science in our name?

Our name is about honesty. The Monitor is owned by The Christian Science Church, and we’ve always been transparent about that.

The Church publishes the Monitor because it sees good journalism as vital to progress in the world. Since 1908, we’ve aimed “to injure no man, but to bless all mankind,” as our founder, Mary Baker Eddy, put it.

Here, you’ll find award-winning journalism not driven by commercial influences – a news organization that takes seriously its mission to uplift the world by seeking solutions and finding reasons for credible hope.

Explore values journalism About us