Panguite: Ancient mineral newly discovered

Study of a 1969 fireball meteorite has unearthed a new mineral, named panguite. This mineral was likely around when the solar system formed, billions of years ago. 

|
Caltech / Chi Ma
The new mineral, panguite, occurring with the scadium-rich silicate called davisite was found embedded in a piece of the Allende meteorite. Scientist believe the newly discovered mineral formed when the solar system was in its infancy.

A fireball that tears across the sky is not just a one-time skywatching event — it can reap scientific dividends long afterward. In fact, one that lit up Mexico's skies in 1969 scattered thousands of meteorite bits across the northern Mexico state of Chihuahua. And now, decades later, that meteorite, named Allende, has divulged a new mineral called panguite.

Panguite is believed to be among the oldest minerals in the solar system, which is about 4.5 billion years old. Panguite belongs to a class of refractory minerals that could have formed only under the extreme temperatures and conditions present in the infant solar system.

The name of the titanium dioxide mineral, which has been approved by the International Mineralogical Association, honors Pan Gu, said in Chinese mythology to be the first living being who created the world by separating yin from yang (forming the earth and sky). [Infographic: The Science of Meteorites]

"Panguite is an especially exciting discovery since it is not only a new mineral, but also a material previously unknown to science," study researcher Chi Ma, a senior scientist at Caltech, said in a statement.

Until now, panguite had neither been seen in nature nor created in a lab. "It's brand-new to science," Ma told LiveScience in an interview.

The scientists used a scanning-electron microscope to view the panguite within a so-called ultra-refractory inclusion embedded within the meteorite. Inclusions are the minerals that get trapped inside meteorites as they are forming. The ultra-refractory type includes minerals that can resist high temperatures and other conditions in extreme environments, such as those thought to exist as our solar system was forming.

High-tech lab analyses revealed panguite's chemical composition and crystal structure, which Ma said is new, and as such, could be explored for novel engineering materials.

The Allende meteorite, where the mineral was hidden, is the largest of a class of carbonaceous chondrites found on Earth. Chondrites are primitive meteorites that scientists think were remnants shed from the original building blocks of planets. Most meteorites found on Earth fit into this group. (When meteors hit the ground they are called meteorites.)

Before they reach terra firma, most meteorites are fragments of asteroids (space rocks that travel through the solar system), while others are mere cosmic dust shed by comets. Rare meteorites are impact debris from the surfaces of the moon and Mars. The Allende meteorite likely came from the asteroid belt between Mars and Jupiter, scientists say.

Studying panguite and other components of the Allende meteorite are essential for understanding the origins of the solar system, Ma said. In fact, Ma's team has discovered nine new minerals, including panguite, in the Allende space rock.

The new mineral is detailed in the July issue of the journal American Mineralogist.

Follow LiveScience on Twitter @livescience. We're also on Facebook & Google+.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Panguite: Ancient mineral newly discovered
Read this article in
https://www.csmonitor.com/Science/2012/0626/Panguite-Ancient-mineral-newly-discovered
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe