Tomato's taste: the secret is in its genome

Tomato genetics is the key to improved taste, say researchers who recently published the fruit's full genome. 

Healthier Tomatoes Grown in Seawater.

For years scientists have slaved away, trying to piece together the genes that make up the ripe, red goodness that is the tomato. They have finally published the fleshy fruit's genome in full.

The genome of any species is the DNA code that is stored as a blueprint inside every cell of every individual of that species. The DNA letters, called base pairs, are organized into genes, which are translated into proteins, the building blocks and machinery of every cell.

Decoding these genes can help researchers understand the different types of proteins found in organisms, and how these proteins make that species different from every other species. These kinds of insights from the genome could help crop researchers improve the yield, nutritional content, disease resistance, taste and color of tomatoes, they say.

"For any characteristic of the tomato, whether it's taste, natural pest resistance or nutritional content, we've captured virtually all those genes," study researcher James Giovannoni, of Cornell University, said in a statement. "Tomato genetics underlies the potential for improved taste every home gardener knows and every supermarket shopper desires and the genome sequence will help solve this and many other issues in tomato production and quality."

Generic and wild genomes

The researchers sequenced the genome of the tomato species Solanum lycopersicum, of the variety "Heinz 1706," as their type tomato. These tomatoes possess some 35,000 genes arranged on 12 chromosomes (large arrangements of hundreds of genes packed into one strand), the researchers said.

The researchers also sequenced the garden tomato's wild ancestor, Solanum Pimpinellifolium.

Knowing the sequence of one tomato can help seed companies and plant breeders get a grasp on what makes different varieties, like heirloom tomatoes, different from the generic grocery tomato.

Because the variability between two varieties is pretty small, it's easier to use the Heinz 1706 genome as a guide, and pinpoint the differences that lead to changes in color, taste, texture, size and shapethat distinguish one variety from another.

Tomato vs. potato

The genome is also important in learning why the tomato is so different from its genetic relatives in the nightshade family of flowering plants, which includes the potato, pepper and even coffee. Scientists want to know what genes have changed that gives each of these species their distinct flavor and look.

"Now we can start asking a lot more interesting questions about fruit biology, disease resistance, root development and nutritional qualities," Giovannoni said.

Tomatoes represent a $2 billion market in the United States alone. The USDA estimates that Americans consume, on average, more than 72 pounds (33 kilograms) of tomato products annually. Researchers have even developed a robot tomato harvester to go into space (or just use here on Earth).

The study will be published tomorrow (May 31) in the journal Nature.

You can follow LiveScience staff writer Jennifer Welsh on Twitter, on Google+ or on Facebook. Follow LiveScience for the latest in science news and discoveries on Twitter and on Facebook.

Copyright 2012 LiveScience, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Tomato's taste: the secret is in its genome
Read this article in
https://www.csmonitor.com/Science/2012/0628/Tomato-s-taste-the-secret-is-in-its-genome
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe