Elusive element 113, long sought by scientists, finally created in Japan

If confirmed, the achievement will mark the first time Japan has discovered a new element, and should make Japan the first Asian country with naming rights to a member of the periodic table. 

|
RIKEN
Scientists at Japan's RIKEN Nishina Center for Accelerator-based Science say they've finally succeeded in creating the synthetic element 113.

Scientists in Japan think they've finally created the elusive element 113, one of the missing items on the periodic table of elements.

Element 113 is an atom with 113 protons in its nucleus — a type of matter that must be created inside a laboratory because it is not found naturally on Earth. Heavier and heavier synthetic elements have been created over the years, with the most massive one being element 118, temporarily named ununoctium.

But element 113 has been stubbornly hard to create. After years of trying, researchers at the RIKEN Nishina Center for Accelerator-Based Science in Japan said today (Sept. 26) they finally did so. On Aug. 12, the unstable element was formed and quickly decayed, leaving the team with data to cite as proof of the accomplishment.

"For over nine years, we have been searching for data conclusively identifying element 113, and now that at last we have it, it feels like a great weight has been lifted from our shoulders," Kosuke Morita, leader of the research group, said in a statement. [Graphic: Nature's Tiniest Particles Explained]

If confirmed, the achievement will mark the first time Japan has discovered a new element, and should make Japan the first Asian country with naming rights to a member of the periodic table. Until now, only scientists in the United States, Russia and Germany have had that chance.

"I would like to thank all the researchers and staff involved in this momentous result, who persevered with the belief that one day 113 would be ours," Morita said. "For our next challenge, we look to the uncharted territory of element 119 and beyond."

Scientists are continually trying to create bigger and bigger atoms, both for the joy of discovery and for the knowledge these new elements can offer about how atoms work.

Most things in the universe are made of very simple elements, such as hydrogen (which has one proton), carbon (six) and oxygen (eight). For each proton, atoms generally have roughly the same number of neutrons and electrons. Yet the more protons and neutrons that are packed into an atom's nucleus, the more unstable the atom can become. Scientists wonder if there is a limit to how large atoms can be.

The first synthetic element was created in 1940, and so far 20 different elements have been made. All of these are unstable and last only seconds, at most, before breaking apart into smaller elements.

To synthesize element 113, Morita and his team collided zinc nuclei (with 30 protons each) into a thin layer of bismuth (which contains 83 protons). When 113 was created, it quickly decayed by shedding alpha particles, which consist of two protons and two neutrons each. This process happened six times, turning element 113 into element 111, then 109, 107, 105, 103 and finally, element 101, Mendelevium (also a synthetic element).

Morita's group seemed to create element 113 in experiments conducted in 2004 and 2005, but the complete decay chain was not observed, so the discovery couldn't be confirmed. Now that this specific pattern resulting in Mendelevium has been seen, the scientists say it "provides unambiguous proof that element 113 is the origin of the chain."

Follow Clara Moskowitz on Twitter @ClaraMoskowitz or LiveScience @livescience. We're also onFacebook & Google+.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Elusive element 113, long sought by scientists, finally created in Japan
Read this article in
https://www.csmonitor.com/Science/2012/0927/Elusive-element-113-long-sought-by-scientists-finally-created-in-Japan
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe