What's the mass of an electron? Scientists make most precise measurement yet.

Using a novel technique, scientists have greatly improved the precision with which they can measure the mass of an electron, a new study reports.

|
Illustration by Jake Turcotte
This illustration looks nothing like an actual atom. The electrons that orbit an atomic nucleus are actually in all possible places at the same time.

Scientists have made the most precise measurement yet of the electron's atomic mass.

"It is a major technical improvement," said Edmund Myers, a physicist at Florida State University, who wrote an accompanying News & Views article today (Feb. 19) in the journal Nature, where the new measurement is detailed. "They have improved the precision by a factor of 13." The new value is just the tiniest bit smaller than the previous best value, though not by a significant amount.

The new measurement could one day be used in experiments to test the Standard Model, the reigning physics theory that describes the tiny particles that make up the universe.

But before the new value can be used to test the basic physics theory, other fundamental constants need to be measured at higher precision, Myers said. [The 9 Biggest Unsolved Mysteries in Physics]

Electron mass

The electron's mass is one of a few key parameters that govern the structure and properties of atoms, yet because the electron is so tiny, precisely measuring its atomic mass has been difficult. The most precise measurement so far was one adopted by the Committee on Data for Science and Technology, in 2006.

To improve on this value, Sven Sturm, a physicist at the Max Planck Institute for Nuclear Physics in Germany, and his colleagues bound an electron to a bare carbon nucleus, which has a mass that's already known. The result was a charged carbon nucleus or ion. Next, they pinned the bound electron into place using electric and magnetic fields.

The team developed a technique to measure the ion when it was almost at rest, which limits uncertainty in the system, Sturm said in an email.

Electrons' intrinsic angular momentum, or spin, act like tiny bar magnets, which, when exposed to a magnetic field, rotate around the field's axis. By combining information on the carbon nucleus with the frequency at which the electron's spin rotates in the presence of a magnetic field, the team deduced the electron's mass more precisely than ever before, Sturm said in an email.

Testing the Standard Model

The exquisitely precise measurement could pave the way for future tests of the Standard Model, which has extraordinary predictive ability but can't explain many phenomenon, such as the existence of gravity, the prevalence of dark matter and energy and the amount of antimatter in the universe.

One theory is that Standard Model is a good approximation when there are low electric fields, but not in the presence of extreme electric fields. In that instance, one way to test the Standard Model would be using a highly charged ion and the strongest available electric fields to potentially reveal unknown physics, Sturm said.

The atomic mass of an electron, however, is just one parameter that is needed to calculate another value, known as the fine structure constant, Myers said. That, in turn, could allow physicists to get more precise measurements of the electron's magnetic moment. Only then will scientists truly be able to test the Standard Model, he said.

But the researchers say they are already at work crafting new experiments.

"We are currently setting up a next-generation experiment for tests of the Standard Model in heavy, highly-charged ions, which will be extremely sensitive to physics beyond the Standard Model," Sturm said. "The electron mass will be a key input parameter for these experiments."

Follow Tia Ghose on Twitter and Google+. Follow Live Science @livescience, Facebook & Google+. Original article on Live Science.

Copyright 2014 LiveScience, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to What's the mass of an electron? Scientists make most precise measurement yet.
Read this article in
https://www.csmonitor.com/Science/2014/0219/What-s-the-mass-of-an-electron-Scientists-make-most-precise-measurement-yet
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe