Blue-light special: three scientists share Nobel for physics for work on LEDs

The trio's collective breakthroughs have spawned light bulbs that last for a decade. Blue LEDs have made possible flat-panel, full-color computer monitors and TV screens, and are used in lasers for Blu-ray.

|
Kyodo News/AP
Meijo University Prof. Isamu Akasaki, center, won the Nobel Prize in physics Tuesday, together with Nagoya University Prof. Hiroshi Amano and Shuji Nakamura of the University of California at Santa Barbara.The trio won the Nobel for the invention of blue light-emitting diodes — a new energy efficient and environment-friendly light source.

Three researchers, one from the United States and two from Japan, have been awarded the 2014 Nobel Prize in Physics for their roles in developing light-emitting diodes that shine blue – for decades, a Holy Grail in the field of photonics.

The trio's collective breakthroughs have spawned light bulbs that last for a decade and consume less than 20 percent of the power incandescent bulbs use to provide the same amount of light. Blue LEDs have made possible today's flat-panel, full-color computer monitors and TV screens, and are used in lasers for Blu-ray DVD players and higher density data storage on computer DVDs. The technology also is being incorporated into water purifiers, which use ultraviolet light to kill bacteria and viruses in water.

Globally, LED lights, combined with batteries and solar panels to charge them, could allow more than 1 billion people to move from kerosene lamps – or no lamps at all – to electric lighting without using local gas or diesel generators or regional power plants to provide it.

Unlike many Nobel Prizes, the rationale for this year's selection is relatively easy to grasp, notes Fredrick Dylla, executive director of the American Institute of Physics (AIP) in Washington.

People "can walk into a hardware store and see white LED lights that are still rather expensive, but have labels that say they won't burn out for 10 years and the cost of operating" is about one-tenth that of an incandescent bulb, he says, dubbing it lighting for the 21st century.

What's so big about blue? It was the last holdout on the path to using LEDs to provide white light. Blue, or more properly cyan, is one of three primary colors, along with magenta and yellow. In pigments for paint, which selectively reflect light, an equal blend of the three yields black. With light itself, however, an equal blend of the three yields white. In both cases, all of the other colors in the visible spectrum result from a judicious mix of the primary colors.

Between the end of World War II and the mid-1950s, researchers were uncovering the mechanism in semiconductors that allowed some of them to emit light when subjected to an electric current. The first LEDs out of the gate in the early 1960s operated at infrared wavelengths as well as red. In addition, yellow became common. 

But for lighting, blue and green wouldn't emerge commercially until the mid-1990s. The first white LEDs started appearing in computer screens around the middle of the 2000s.

This year's winners – Isamu Akasaki, with Meijo University and Nagoya University, Hiroshi Amano, of Nagoya University, and Shuji Nakamura, with the University of California at Santa Barbara – are sharing the $1.1 million prize for "very carefully choosing materials" and the techniques for incorporating them into light-emitting diodes "into configurations that work, then work for a reasonable period of time, and at a reasonable brightness and efficiency," Dr. Dylla explains.

"This was a journey" 30 years in the making, not the culmination of a single eureka moment, he adds.

Indeed, the LED light bulbs on the market today have yet to realize the goal of blending light from red, blue, and green LEDs. Although the light from white LEDs is used directly in flashlights and some floodlights, the most cost-effective way of getting LED room lighting to market has been to harness the light from blue LEDs to tickle a layer of phosphor inside the bulb. The phosphor has been formulated to yield the right amount of red and green light as it glows to make white light when it combines with the light from the blue LED.

Red, green, and blue LEDs are used in computer displays and smart-phone screens, but these applications require sophisticated circuitry to control the production of the full range of colors, especially when the screen is displaying videos.

The three researchers will receive their award at a ceremony in Stockholm on Dec. 10.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Blue-light special: three scientists share Nobel for physics for work on LEDs
Read this article in
https://www.csmonitor.com/Science/2014/1007/Blue-light-special-three-scientists-share-Nobel-for-physics-for-work-on-LEDs
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe