First stars are 150 million years younger than thought, Planck telescope finds

The cosmos's first stars appear to have formed 150 million years later than previous measurements indicated, according a new analysis of data from the European Space Agency's Planck observatory.

|
Planck Collaboration via NASA/ESA/NASA
This image released March 21, 2013 by the ESA and Planck Collaboration shows the afterglow of the Big Bang, the cosmic microwave background, as detected by the European Space Agency's Planck space probe. The radiation was imprinted on the sky when the universe was 370,000 years old. It shows tiny temperature fluctuations that correspond to regions of slightly different densities, representing the seeds of all future structure: the stars and galaxies of today.

The cosmos's first stars appear to have formed 150 million years later than previous measurements indicated, according a new analysis of data from the European Space Agency's Planck observatory.

The earlier measurements, made by NASA's WMAP mission, put ignition of the first stars at some 400 million years after the big bang, the enormous release of energy that gave birth to the universe some 13.8 billion years ago.

This period is of keen interest because it heralded the beginning of the end for the cosmos's dark ages – a period in which the universe was brimming with neutral hydrogen gas, opaque to light. But as stars formed from the hydrogen and gathered into galaxies, these energetic structures began to ionize the hydrogen, in effect burning off the fog.

It will be sitting high on the astrophysical agenda for the next decade or so as new ground-based and space-based telescopes capable of probing this portion of cosmic history come on line, notes Scott Dodelson, an astrophysicist at the Fermi National Accelerator Laboratory in Batavia, Ill.

On one level, a 150-million-year later start to a re-ionization process that lasted 500 million years doesn't change that period's narrative much, suggests Avi Loeb, an astronomer at Harvard University and director of the Institute for Computation and Theory at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., in an e-mail.

But it does help resolve an thorny accounting problem related to the levels of ultraviolet light needed to ionize the neutral hydrogen, breaking them up into their constituent electrons and protons.

WMAP’s measurements suggested an early start to this process. But as researchers took inventory of the cosmos's ionizing ultraviolet radiation, they found the earliest known galaxies didn't produce enough ionizing radiation to clear out the fog over the span of time it took to do so.

A later start for re-ionization "alleviates some of the tension that existed before as we were trying to identify the sources of re-ionization," Dr. Dodelson says. "Pushing it later makes it easier to form those sources."

Planck and its predecessor WMAP were designed to study the big bang's afterglow, known as the cosmic microwave background. It corresponds to a time when the universe was a scant 380,000 years old.

This afterglow carries clues about the origins and early evolution of the structure astronomers see in the universe today. These clues are encoded in subtle variations in the afterglow's temperature across the sky and in the orientation of the radiation reaching the spacecraft.

Launched in 2001, WMAP spent nine years mapping the cosmic microwave background in what at the time was an unprecedented level of detail. Planck followed in 2009, and conducted its mapping effort for four years at even greater levels of detail.

The Planck results provide "a high-fidelity image of the boundary of our visible universe," revealing details of its structure when it was a showing us its detailed structure" at a very early age, said Simon White, director at the Max Planck Institute for Astrophysics and a member of the Planck science team, in a prepared statement.

Yet Planck's science team notes that by processing the WMAP data using an approach designed for Planck, the WMAP results also show a later start for re-ionization.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to First stars are 150 million years younger than thought, Planck telescope finds
Read this article in
https://www.csmonitor.com/Science/2015/0206/First-stars-are-150-million-years-younger-than-thought-Planck-telescope-finds
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe