Ancient 'hypercarnivores' preyed on mammoths, say scientists

A million years ago, giant predators like the cave hyena and the saber-toothed cat were able to take down mastadons, according to new computer models.

|
Painting courtesy of Mauricio Anton
Biologists have found that a pack of hypercarnivores, such as saber-toothed cats (shown here fighting with adult Colombian mammoths over a young mammoth carcass), could have taken down juveniles of Earth's largest herbivores.

Nearly a million years ago, a cave hyena could have taken down a 5-year-old mastodon weighing more than a ton. And in packs, the predators may have been equipped to demolish a 9-year-old mastodon weighing a hefty 2 tons.

That's according to new computer models that can calculate how big a target an ancient hypercarnivore, such as the cave hyena and the saber-toothed cat that rely solely on meat for sustenance, might have tackled, researchers say.

These findings show how ancient super-predators far larger than the wolves, lions and hyenas of today once kept megaherbivores such as mammoths, mastodons and giant ground sloths in check, researchers said. [Photos: Autopsy of a 40,000-Year-Old Mammoth]

"The probable role these large predators played in maintaining stable ecosystems hasn't been recognized until now," said the study's lead author, Blaire Van Valkenburgh, an evolutionary biologist at the University of California, Los Angeles.

Herbivores in check

Nowadays large herbivores such as elephants and white-tailed deer can have devastating effects on the environment by stripping it of vegetation through overgrazing (eating ground plants) or overbrowsing (eating leaves off trees). This brings up the question of what prevented widespread habitat destruction in the Pleistocene epoch, which lasted from about 1 million to 11,000 years ago. Back then, a much greater diversity of megaherbivores — plant-eaters 1,760 lbs. (800 kilograms) and larger — roamed the Earth.

Modern research suggests that current megaherbivores like elephants are largely immune to predators. However, scientists now find that ancient hypercarnivores had the ability to, and likely did, limit megaherbivore numbers.

The impact of ancient hypercarnivores on past megaherbivores may have been difficult to appreciate because many extinct hypercarnivores such as saber-toothed cats have no close living counterparts, the researchers noted. This makes it difficult to deduce what they might have preyed on.

Still, the researchers noted there was once a much greater diversity of predators than exists today, many of which were significantly larger than their modern analogs — for the ones that do have analogs. This diversity suggests there was once intense competition between these carnivores, perhaps leading some to specialize in hunting megaherbivores.

Pleistocene teeth

To deduce the potential impact of ancient hypercarnivores, the researchers analyzed the fossil record to gauge size ranges for Pleistocene predators larger than about 45 lbs. (21 kg). Whereas modern hypercarnivores average 116 to 138 lbs. (53 to 63 kg), fossil hypercarnivores spanned 211 to 297 lbs. (96 to 135 kg) on average.

"Scientists didn't really understand how much bigger some of these Pleistocene predators were than modern ones," Van Valkenburgh told Live Science.

Previous research then helped the scientists develop estimates of an animal's size based on just its first molar. "In the fossil record, the one thing we've got a lot of is teeth," Van Valkenburgh said in a statement.

The researchers next estimated the sizes of ancient mammoths and mastodons. To do so, they developed mathematical formulas for the relationship of shoulder height to body mass from previous research on modern captive elephants.

By looking at the sizes of modern carnivores and the preferred sizes of their victims, the scientists then estimated what sizes of prey ancient predators might have targeted. They concluded that juvenile mastodons and mammoths would have been susceptible to many past hypercarnivores, especially ones that hunted in groups such as prides, clans and packs.

Indirect evidence that ancient predators hunted in larger groups than they do today may come from fossil teeth. Among modern carnivores, when competition over prey is high, prey is more difficult to capture, and carnivores make the most out of carcasses by eating more bone, leading to higher rates of broken teeth. When it came to large predators of the New World during the Pleistocene, tooth fracture rates were as much as three to five times that of their modern counterparts, suggesting higher densities of predators to prey than seen now.

"The group sizes of predators were considerably larger in the past than they are today, which would have made it easier for them to take down large prey," Van Valkenburgh said.

More work is needed to reconstruct Pleistocene ecosystems, "which were clearly hugely different from today," Van Valkenburgh said. "By understanding what we lost, what the productivity of the planet was, we can learn more about the time in which our species evolved and maybe why we've done so well."

Van Valkenburgh and her colleagues detailed their findings online today (Oct. 26) in the journal Proceedings of the National Academy of Sciences.

Follow us @livescienceFacebook & Google+. Original article on Live Science.

Copyright 2015 LiveScience, a Purch company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Ancient 'hypercarnivores' preyed on mammoths, say scientists
Read this article in
https://www.csmonitor.com/Science/2015/1028/Ancient-hypercarnivores-preyed-on-mammoths-say-scientists
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe