Rosetta spacecraft detects molecular oxygen on comet

The European Space Agency's Rosetta spacecraft has detected dioxygen streaming from comet 67P/Churyumov-Gerasimenko, a finding that challenges our current models of our early solar system. 

|
ESA/Rosetta/NAVCAM
ESA's Rosetta spacecraft has found molecular oxygen in the coma of comet 67P/Churyumov-Gerasimenko, which has puzzled scientists.
|
ESA/Rosetta/NAVCAM
The Hatmehit region on the small lobe of comet 67P/Churyumov-Gerasimenko. The Rosetta spacecraft continues to reveal new secrets about the composition of the comet, including the recent discovery of molecular oxygen.

The Rosetta spacecraft has detected molecular oxygen in the gas streaming off comet 67P/Churyumov-Gerasimenko, a curious finding that has scientists rethinking the ingredients that were present in the early solar system.

What's mystifying astronomers about the new find is why the oxygen wasn't annihilated during the solar system's formation. Molecular oxygen is extremely reactive with hydrogen, which was swirling in abundance as the sun and planets were created. Current solar system models suggest the molecular oxygen should have disappeared by the time 67P was created, about 4.6 billion years ago.

"It was a big surprise to actually detect the O2 [oxygen]," Andre Bieler, a research fellow at the University of Michigan who co-led the study, said in a media briefing held by the journal Nature, where the new research was published. [Photos: Europe's Rosetta Comet Mission in Pictures]

While the study suggests solar system modelling may need revision, Bieler and co-author Kathrin Altwegg, a space scientist at the University of Bern — both of whom are cometary scientists and not modeling experts — said they could not speculate too much on what, exactly, would change about those models.

Meanwhile, the scientists said they are trying to find molecular oxygen in the 1986 Giotto spacecraft observations of Halley's Comet, the only other comet to get a close-up visit from a spacecraft. The spectral lines of oxygen are too faint to be seen from Earth. This means that even though molecular oxygen may be common in other comets, there is no way yet to confirm that theory.

Rosetta has spent more than a year following Comet 67P as it traveled around the sun in a loop that came close to Mars' orbit, then whizzed back to the outer solar system. In that time, Rosetta has detected many elements in the comet's coma (the cloud of gas around the rocky nucleus), such as water, carbon monoxide and carbon dioxide. These elements are common to other comets that scientists have observed.

But molecular oxygen was not expected at all, the scientists said. Rosetta's mass spectrometer, ROSINA-DFMS, detected it over six months between September 2014 and March 2015. The scientists spent months making sure that the oxygen was not an instrument glitch.

They observed that the oxygen was denser when the spacecraft was close to the comet and less dense when the spacecraft was farther away. The oxygen also seemed to "follow" the comet, and remained in constant quantities even as 67P shed its outer layers to the sun. With the detection of it confirmed, the scientists then asked themselves how it got there in the first place.

Dueling theories

There are two leading theories as to how the oxygen got into the comet. Perhaps the oxygen, as a gas, dissolved or "froze out" onto the icy grains that eventually came together to construct the comet.

The problem with that theory is that gaseous molecular oxygen has only been found a couple of times outside of the solar system (the researchers did not have details as to where). This hints that this kind of gas must be rare in the solar system. Also, chemistry suggests that it should transform into water ice rather than staying as molecular oxygen.

Alternatively, maybe water ice on 67P's surface broke up as energetic or radioactive particles bombarded the regolith (dust covering the surface of the comet). In several steps, the water — made up of hydrogen and oxygen atoms — could break up into molecular oxygen, which would then "be incorporated into voids that are also created in the ice," Bieler said.

This sort of process could have created the oxygen molecules observed near the moons of Jupiter and Saturn. In this case, the moons would have been struck by high-energy particles from the gas giant planets, which have massive radioactive fields surrounding them, the scientists said. 67P, however, lacks this sort of immediate, nearby source for radiation.

However the molecular oxygen got into the comet, the authors suggest that it must have been there before the solar system was formed about 4.5 billion years ago. Perhaps high-energy particles bombarded the birthplace of our sun — known as a dark nebulae — and split the water present in that nebula into oxygen and hydrogen.

This is supported by measurements of 67P suggesting that much of the material inside of it predates the solar system, and further, that its composition is similar to dark nebulae.

A paper based on the research was published today (Oct. 28) in Nature.

Follow Elizabeth Howell @howellspaceFollow us @Spacedotcom, Facebook and Google+. Original article on Space.com.

Copyright 2015 SPACE.com, a Purch company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Rosetta spacecraft detects molecular oxygen on comet
Read this article in
https://www.csmonitor.com/Science/2015/1029/Rosetta-spacecraft-detects-molecular-oxygen-on-comet
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe