Could Mars someday get its own set of rings?

In a few tens of millions of years, one of Mars's moons, Phobos, will be broken up by Mars, either by collision or gravitational pull. When that happens, the Red Planet may have a ring system.

|
Made using Celestia, Copyright (C) 2001-2010, Celestia Development Team
An artist's impression of a ring around Mars, formed by its tiny moon Phobos. Credit:

Mars may one day have rings similar to Saturn's famous halo, new research suggests.

In a few tens of millions of years, the Red Planet may completely crush its innermost moon, Phobos, and form a ring of rocky debris, according to the new work. Phobos is moving closer to Mars every year, meaning the planet's gravitational pull on the satellite is increasing. Some scientists have theorized that Phobos will eventually collide with Mars, but the new research suggests that the small moon may not last that long.

"The main factor affecting whether Phobos will crash into Mars or break apart is its strength," Tushar Mittal, a graduate student at the University of California, Berkeley and one of the authors of the new research paper, told Space.com by email. "If Phobos is too weak to withstand increasing tidal stresses, then we expect it to break apart." [Photos of Mars' Moon Phobos Up Close]

Strength of a satellite

The two moons of Mars, Phobos and Deimos, are named after the children of the god Ares, the Greek counterpart to Mars, the Roman god of war.

The larger, inner moon, Phobos, is only about 14 miles (22 kilometers) wide, and orbits the Red Planet rapidly, rising and setting twice each Martian day. The tiny moon is slowly moving toward its host — drawing closer to Mars by 6.5 feet (2 meters) every century — which may result in a dramatic crash into the Martian surface within 30 million to 50 million years, previous research has shown.

But after simulating the physical stresses that Mars exerts on Phobos, Mittal and co-author Benjamin Black, a postdoctoral researcher at UC Berkeley, see a different fate for Phobos. Their research suggests that instead of going out in a single, enormous impact, the moon will be pulled apart by the Martian gravity.

On Earth, the gravitational pull of the moon causes the rise and fall of ocean tides. Although the moon has no oceans, Earth's gravitational pull is still referred to as "tidal forces."

Phobos and other moons in the solar system also feel tidal stress from their hosts. Black and Mittal studied the "strength" of the Martian satellite, including characteristics like composition and density, to determine how much planetary stress the moon could withstand.

After comparing it to several meteorites on Earth, they concluded that Phobos today is made up of porous, heavily damaged rock and is likely the same throughout its interior.

"The moon is probably neither a complete rubble pile, nor completely rigid," Mittal said. "The porosity of Phobos may have helped it survive."

After simulating the stresses caused by the tidal pull of Mars, the pair found that the moon would break up over the course of 20 million to 40 million years, forming a ring of debris around the planet.

The rubble would continue to move inward, toward the planet, though at a slower pace than the larger moon is traveling, they said. Over the span of 1 million to 100 million years, the particles would rain down on the equatorial region of Mars, Mittal and Black said.

Initially, the ring could be as dense as Saturn's, but it would become thinner as the particles fell down onto the planet over time, they added. [Latest Images from the Mars Reconnaissance Orbiter

An inward-moving planet

Saturn isn't the only planet in the solar system to boast rings; all of the gas giant planets have some form of debris disk surrounding them. While some of the material was likely gathered from space, portions of those ring systems could be the remains of early moons that broke apart as they journeyed inward. Larger moons move inward at a faster pace than their smaller counterparts, causing a much more rapid demise.

"Phobos is unique in that it is currently one of only a couple of inwardly evolving moons in our solar system that we know about," Mittal said. "However, since inwardly evolving moons inadvertently self-destruct, it is possible that more inwardly migrating moons may have existed in the past."

Phobos is the only remaining inwardly migrating moon known to exist today. The tiny, doomed moon may help scientists to better understand the evolution of the early solar system and the fate of other moons already destroyed.

What would a ring on Mars look like?

For an observer standing the surface of Mars, the ring will look different depending on her location.

"From one angle, the ring will reflect extra light towards a viewer, and it will look like a bright curve in the sky," Mittal said. "From another angle, the viewer might be in the ring's shadow, and the ring would be a dark curve in the sky."

Because Phobos is made up of dark material that doesn't reflect light well, the ring might be difficult to spot from Earth with an amateur telescope. However, Mittal suggested that the ring's shadow on Mars could be visible.

Confined to a single, stable disk, the ring — if it forms — shouldn't create too many problems for theexploration of, or travel to, the Red Planet, Mittal said. However, "Any deorbiting ring particles could be a potential hazard for a Mars base built near the equator," he added.

The research was published online today (Nov. 23) in the journal Nature Geoscience.

Follow us @Spacedotcom, Facebook and Google+. Original article on Space.com.

Copyright 2015 SPACE.com, a Purch company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Could Mars someday get its own set of rings?
Read this article in
https://www.csmonitor.com/Science/2015/1124/Could-Mars-someday-get-its-own-set-of-rings
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe