Stellar eclipse plunges distant star system into 3-1/2 years of darkness

The star system sets new records for both the longest eclipse and the longest time between eclipses in a binary star system, researchers at Vanderbilt University found.

|
Courtesy of Jeremy Teaford/Vanderbilt University
Illustration of binary star system which produces the longest lasting eclipses known.

Think this winter feels long and dreary? In a distant star system nearly 10,000 light years away, every 69 years, the sun disappears in an eclipse that lasts for three and a half years, researchers at Vanderbilt University have discovered.

The newly discovered binary star system, currently known only by the astronomical catalog number TYC 2505-672-1, marks a new record for both the longest stellar eclipse in terms of duration and the longest period between eclipses in a binary system.

The researchers have found that the system appears to consist of a pair of giant red stars, with one that has been stripped down to a relatively small core and surrounded by a large disk of material that they believe produces the extended eclipse.

“It’s the longest duration stellar eclipse and the longest orbit for an eclipsing binary ever found…by far,” says Joey Rodriguez, a doctoral candidate at Vanderbilt University who led the research, in a news release.

The new discovery, which involved collaboration with astronomers at Harvard University as well as researchers at Las Cumbres Observatory Global Telescope network, a private non-profit, Lehigh, Ohio State, and Pennsylvania State universities, was recently accepted for publication in the Astronomical Journal.

The newly discovered system passes the previous milestone, set by Epsilon Aurigae, a giant star located much closer to Earth, that is eclipsed by its companion star every 27 years for periods that last between 640 and 730 days, or up to two years.

“Epsilon Aurigae is much closer – about 2,200 light years from Earth – and brighter, which has allowed astronomers to study it extensively,” he adds.

The leading explanation for Epsilon Aurigae’s behavior is that the system is made up of a yellow giant star orbited by a normal star slightly bigger than the sun that is embedded in a thick disk of dust and gas oriented nearly edge on when it is viewed on Earth.

The researchers say TYC 2505-672-1, could present a unusual chance to study how planets form over longer astronomical timescales that can outlast a human’s normal lifespan.

“Here we have a rare opportunity to study a phenomenon that plays out over many decades and provides a window into the types of environments around stars that could represent planetary building blocks at the very end of a star system’s life,” said Keivan Stassun, a professor of physics and astronomy at Vanderbilt who co-authored the paper, in the statement.

The researchers were able to learn more about the system by combining observations from two separate networks that drew from nearly a century of photographic plates. Observations by the American Association of Variable Star Observers, a non-profit organization of professional and amateurs who focus on variable stars – or those that change brightness – provided a few hundred observations of the new system’s most recent eclipse.

They then combined this with photographic plates from the long-running Digital Access to a Sky Century @ Harvard (DASCH) program, which includes plates taken by astronomers at the university surveying the northern sky between 1890 and 1989.

Mr. Rodriguez collaborated with Sumin Tang of the Harvard-Smithsonian Center for Astrophysics to combine the observations with additional images from the low-cost Kilodegree Extremely Little Telescope, a pair of robotic telescopes that is intended to find exoplanets located around bright stars. KELT’s wide field of view of 26 by 26 degrees led Rodriguez to wonder if its database might also contain recent images of the distant binary system.

The researchers found that while the new system is similar to that of Epsilon Aurigae, the extended disk made of opaque is likely causing the longer eclipse. The new system’s distant location meant that the amount of data they were able to gather from the images is limited, but they estimated that the companion star is about 2,000 degrees Celsius hotter than the sun.

The observation that the star is less than half the diameter of the sun led them to suggest that it may be a red giant with its outer layers stripped away, proposing that the stripped material is what creates the obscuring disk that causes the long eclipse, though they are not fully certain.

But the 69-year duration between eclipses, led the astronomers to calculate that the stars must be orbiting at about 20 astronomical units, a very large distance approximately the distance between our Earth’s sun and Uranus.

But they’re hoping that future technological developments could help confirm their findings.

“Right now even our most powerful telescopes can’t independently resolve the two objects,” Rodriguez says. “Hopefully, technological advances will make that possible by 2080 when the next eclipse occurs.”

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Stellar eclipse plunges distant star system into 3-1/2 years of darkness
Read this article in
https://www.csmonitor.com/Science/2016/0219/Stellar-eclipse-plunges-distant-star-system-into-3-1-2-years-of-darkness
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe