How did some birds become red? Scientists unravel clues.

New research identified a genetic enzyme in birds that converts yellow pigments from their food into red pigments applied to their bills, feathers, and skin.

|
Stuart Dennis
Left: A wildtype male zebra finch with distinctive red beak. Right: A male zebra finch with the mutant 'yellowbeak' gene.

Where do some birds get their vibrant red colors? New has research identified a genetic enzyme in birds that converts yellow pigments from their food into red pigments applied to their bills, feathers, and skin. The color red is very important for birds, playing an active role in in mating, protection, and representation of genetic quality.

Two independent studies published in Current Biology each indicate the same gene is responsible for red pigmentation in birds. One of the studies – carried out by Ricardo Lopes, an evolutionary biologist at Portugal's Universidade do Porto; James Johnson, biochemist PhD candidate at Auburn University; and Matthew Toomey, a postdoctoral biologist at Washington University School of Medicine – compared domesticated yellow and red factor canaries. Bred nearly a century ago, red factor canaries are a cross between Serinus canaria, domesticated yellow canaries, and Spinus cucullata, wild red siskins.

"We discovered a gene that codes for an enzyme that enables this yellow-to-red conversion in birds," said the Universidade do Porto's Miguel Carneiro, who co-authored the study, which investigated the source of the "red factor" in canaries. "To produce red feathers, birds convert yellow dietary pigments known as carotenoids into red pigments and then deposit them in the feathers." Their study found CYP2J19, a cytochrome P450 enzyme on chromosome 8, to be responsible for red pigmentation.

The other study explored the genetics of domesticated wild-type and yellow-beaked zebra finches. Two groups carried out the study: one under the direction of Nicholas Mundy, evolutionary geneticist in the department of zoology at the University of Cambridge, and the other led by Jessica Stapley, evolutionary biologist in the department of animal and plant sciences at the University of Sheffield. The two research groups studied the genes of Taeniopygia guttata, domesticated zebra finches.

Birds such as zebra finches get carotenoids, or yellow pigments, from their food: seeds, in the case of the zebra finch, and insects for other bird species. Before the study, it had already been established that they convert carotenoids into ketocarotenoids, red pigments, but the process remained ambiguous.

"It was known that birds have an unusual ability to synthesize red ketocarotenoids from the yellow carotenoids that they obtain in their diet, but the enzyme, gene, or genes, and anatomical location have been obscure," said Mundy in a press release. "Our findings fill this gap and open up many future avenues for research on the evolution and ecology of red coloration in birds."

The study identified a group of three genes in wild finches that were missing or mutated in the same genetic region for "yellowbeak" birds. Like the aforementioned study, the genes in this study encode cytochrome P450s enzymes, which are essential in metabolizing toxic compounds.

"Red colour in birds is thought to signal individual genetic quality," according to the study. Red pigmentation is a sign of better genes, as it is useful in mating and self-defense. Red is often used to attract mates or warn rivals to stay away before a conflict ensues. Researchers also found that the red factor gene is also responsible for enhanced avian color vision.

"These findings suggest that nearly all birds have the latent capacity to make red feathers, but in order to actually do so, they must evolve the means of expressing [this gene] in the skin in addition to the retina," said Professor Joseph Corbo, researcher of retinal diseases at the Washington University School of Medicine.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to How did some birds become red? Scientists unravel clues.
Read this article in
https://www.csmonitor.com/Science/2016/0522/How-did-some-birds-become-red-Scientists-unravel-clues
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe