LISA Pathfinder mission: Hunting for gravitational waves in space

The European Space Administration's LISA Pathfinder mission has succeeded in an experiment that could pave the way for a gravitational wave monitoring space mission. 

|
ESA/ATG medialab
At the core of LISA Pathfinder are the two test masses: a pair of identical 46 mm (2 inch) gold-platinum cubes, floating freely, several millimeters from the walls of their housings. The cubes are separated by 38 cm (15 inches) and linked only by laser beams that measure their positions continuously.

Scientists announced on Tuesday that they have engineered a jumping-off point for gravitational wave observations in outer space.

The European Space Administration launched its Laser Interferometer Space Antenna (LISA Pathfinder) last December to pave the way for a future LISA mission that could achieve the precise measurements and still conditions necessary to measure gravitational waves. 

"With LISA Pathfinder, we have created the quietest place known to humankind,” said Max Planck Institute for Gravitational Physics director Karsten Danzmann in a statement. “Its performance is spectacular and exceeds all our expectations by far.”

Gravitational waves have received much attention since they were first detected in February this year. Their detection confirmed one of the predictions of Albert Einstein’s 100 year old theory of general relativity, and triggered a wave of interest in the global scientific community.

In short, gravitational waves are created when massive cosmic events occur (think exploding suns or black holes colliding). These produce distortions of spacetime that ripple outward, and are very difficult to measure.

That is where the LISA Pathfinder and its successors come in. Scientists have called the LISA Pathfinder “the quietest place in the universe.” By eliminating all outside sources of gravitational “noise,” scientists hope to be able to measure gravitational waves.

The LISA Pathfinder craft reached a gravitationally stable point, Lagrange Point 1, in January. In March, it began looking for the perfect position for gravitational wave detection.

Inside the LISA Pathfinder are two tiny gravitational wave indicators – two 4.6 centimeter gold-platinum cubes. They’re in free fall, and are almost perfectly still. Using these cubes, scientists can measure gravitational waves as they pass through the LISA Pathfinder.

"We can determine the distance of the two free-falling test masses to less than the diameter of a single atom," said Gerhard Heinzel, leader of the Interferometry in Space research group at the Max Planck Institute for Gravitational Physics, in a statement.

Future detectors will likely be farther apart than these tiny cubes, which are separated by just 38 centimeters, but the test cubes have demonstrated that humans can engineer the extraordinarily precise measurements and stability needed for this or any subsequent mission.

The ESA hopes to launch a full capacity LISA mission by 2034. The current plan is to arrange three spacecraft in a triangle, with each spacecraft carrying tiny free-falling cubes. Laser measurements of the distance between these cubes will help scientists study gravitational waves.

"[These] experiments firmly establish that the precision needed by LISA for measuring test-mass displacements are well in hand,” said David Reitze, the executive director of the Laser Interferometer Gravitational-Wave Observatory (LIGO), ”setting the stage for the next era in gravitational-wave detectors."

Others echoed Dr. Reitze’s statement.

“We’ve now truly opened the door to a LISA-like mission,” said Paul McNamara, LISA’s project scientist, in a statement. “The technology we need is no longer black magic; it’s reality.”

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to LISA Pathfinder mission: Hunting for gravitational waves in space
Read this article in
https://www.csmonitor.com/Science/2016/0607/LISA-Pathfinder-mission-Hunting-for-gravitational-waves-in-space
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe