What is the planet Mercury made of? Space probe data reveals clues.

Using data from NASA's MESSENGER probe, scientists have created two new maps of Mercury, revealing never-before-seen formations on the surface of the planet.

|
NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Maps of magnesium-to-silicon ratios (left) and thermal neutron absorption (right) captured by NASA's MESSENGER mission help identify previously unseen terrains on the planet Mercury.

Two new maps of Mercury taken by a NASA probe have identified never-before-seen formations on the planet's surface.

The previously unidentified regions of Mercury have compositions that differ significantly from the crust around them. Known as geochemical terranes, these zones provide insight into the formation of the outer skin of the planet. The maps appear in two new studies, which suggest that the most recently identified features may have formed not from the planet's crust but from just below it, in the mantle.

Created using the X-Ray Spectrometer (XRS) and Gamma-Ray Spectrometer (GRS) instruments on NASA's MESSENGER probe, the maps are used to study the surface chemistry of Mercury, the closest planet to the sun. This analysis will provide information about the concentrations of elements like potassium, uranium and sodium on Mercury's surface. The experiment will also provide scientists with ratios of silicon to other elements on the planet's surface. [See more Mercury photos by NASA's MESSENGER]

The first study used the XRS to produce the first global geochemical maps of Mercury, using a novel method performed for the first time on a planetary scale. By studying X-rays streaming from the sun, the authors were able to examine the composition of geochemical terranes on the planet.

"The consistency of the new XRS and GRS maps provides a new dimension to our view of Mercury's surface," lead author Shoshana Weider, of the Carnegie Institution of Washington, said in a statement. "The terranes we observed had not been previously identified on the basis of spectral reflectance or geographical mapping."

The most obvious of these unusual terranes is a large feature that covers more than 3 million square miles (5 million square kilometers) of the planet's surface. This terrane exhibits the highest observed ratios of silicon to each of the elements of magnesium, sulfur and calcium, as well as some of the lowest aluminum-to-silicon ratios on the planet, according to a new paper published this week in the journal Earth and Planetary Science Letters.

One possible explanation for the unusual region is that it stems from an impact that occurred long ago. The exposed mantle could have aided in the creation of the extremely large feature.

A second map used GRS to trace the absorption of low-energy ("thermal") neutrons across the surface of Mercury. This map shows the distribution across Mercury's northern hemisphere of elements that absorb thermal neutrons. By combining that information with previously obtained data, the authors were able to identify four distinct geochemical terranes on the planet.

The Caloris basin on Mercury, the planet's largest well-preserved impact basin, contains smooth interior plains that the new results reveal have a distinct composition from other volcanic plains on the planet. According to the authors, these plains formed by partial melting of the mantle.

"Earlier MESSENGER data have shown that Mercury's surface was pervasively shaped by volcanic activity," Patrick Peplowski, of the Johns Hopkins University Applied Physics Laboratory and lead author of the paper concerning the second map, said in the same statement.

"The magmas erupted long ago [and] were derived from the partial melting of Mercury's mantle," he said. "The differences in composition that we are observing among geochemical terranes indicate that Mercury has a chemically heterogeneous mantle."

The second study appeared online in the journal Icarus.

"The crust we see on Mercury was largely formed more than 3 billion years ago," said Larry Nittler, deputy principle investigator of the mission and co-author on both studies. "The remarkable chemical variability revealed by MESSENGER observations will provide critical constraints on future efforts to model and understand Mercury's bulk composition and the ancient geological processes that shaped the planet's mantle and crust."

Follow us @SpacedotcomFacebook and Google+. Original article on Space.com.

Copyright 2015 SPACE.com, a Purch company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to What is the planet Mercury made of? Space probe data reveals clues.
Read this article in
https://www.csmonitor.com/Science/2015/0317/What-is-the-planet-Mercury-made-of-Space-probe-data-reveals-clues
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe